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Abstract
We present particle algebras whose representations correspond to states having
at most p particles. For p = 1, the algebra corresponds to fermions. For
p = 2, 3, 4, . . . , the algebra corresponds to the orthofermion algebra Cp with
a new interpretation.

PACS number: 02.10.De

1. Introduction

Oscillator algebras and more recently their deformations have received a lot of attention. The
fermion algebra

aa∗ + a∗a = 1, a2 = 0 (1)

has a unique two-dimensional representation which physically corresponds to the exclusion
principle obeyed by fermions, whereas the boson algebra

aa∗ − a∗a = 1 (2)

has the unique infinite-dimensional representation. In both cases the number operator N = a∗a
counts the possible number of particles in a given state. Spec N = {0, 1} for fermions whereas
Spec N = {0, 1, 2, . . .} for bosons. An immediate question which arises is whether there
exists a particle algebra where the number operator N has the spectrum {0, 1, . . . , p}, p ∈ Z+.
Nondeformed [1] and deformed [2] parafermions of order p satisfy this criterion. It has also
been recognized that the answer to this question is partially given [3] by the orthofermion
algebra [4–7] Cp which is generated by annihilation and creation operators ci, c

∗
i which satisfy

the following relations:

cic
∗
j + δij

p∑

k=1

c∗
kck = δij , (3)
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cicj = 0, c∗
i c

∗
j = 0, i, j ∈ {1, 2, . . . , p}, (4)

where δij stands for the Kronecker delta function. The usual number operator of the
orthofermion algebra is defined by N = c∗

1c1 + c∗
2c2 + · · · + c∗

pcp so that Spec N = {0, 1}.
However, if the number operator is defined by

N = c∗
1c1 + 2c∗

2c2 + · · · + pc∗
pcp, (5)

then N has the desired spectrum {0, 1, . . . , p}. We will show that creation and annihilation
operators a∗, a can be defined such that the number operator in (5) can be written as N = a∗a.
Orthofermion algebras are important because they can be used for constructing local relativistic
quantum field theory [6]. Another important aspect of orthofermions is that although they are
not deformed they are invariant under the quantum group SUq(p + 1) for any deformation
parameter q [8]. Furthermore, orthofermions are related to topological symmetries [9]. A
matrix representation of orthofermions of order p is given by (p + 1) × (p + 1) matrices with
entries

[ci]kl = δk1δli+1, i, k, l ∈ {1, 2, . . . , p + 1}. (6)

This is a unique nontrivial (p + 1)-dimensional irreducible representation [9]. Orthofermions
of order 1 are usual fermions as in (1).

On the other hand, comparing the mathematical relations in (3), (4) with (1) and (2) one
immediately recognizes that these look very different. To interpret the orthofermion algebra
Cp as a single-particle algebra one has to define a single-creation operator a∗ and a single-
annihilation operator a. In this paper, we will present the algebra Ap which is generated by
the annihilation operator a and creation operator a∗ which satisfy the following relations:

aa∗ − a∗a = 1 − p + 1

p!
a∗p

ap, ap+1 = 0. (7)

By defining

a = c1 +
√

2c∗
1c2 + · · · +

√
pc∗

p−1cp, (8)

it is indeed straightforward to show that (3)–(4) imply (7). What is nontrivial, however, is
that by using the a and a∗ of Ap defined by (7), all the ci and c∗

i of (3) and (4) can be
defined and satisfy these relations. We will accomplish this and will show that this algebra is
isomorphic to the orthofermion algebra. Furthermore, in the representation of orthofermion
algebra the states c∗

n|0〉 correspond to a state containing the nth orthofermion, whereas in the
representation of Ap the corresponding state will be the n-particle state, i.e. a state containing
n particles. The creation and annihilation operators of all the algebras Ap defined by (7), upon
multiplication of the first relation by a from the right, satisfy

aa∗a − a∗aa = a. (9)

One can take this relation to define an algebra A. This algebra is interesting since
it possesses both finite-dimensional and infinite-dimensional representations. Finite-
dimensional representations correspond to orthofermions and the infinite-dimensional
representation corresponds to bosons.

This paper is organized as follows. In section 2, we will prove that there exists an
isomorphism from Ap onto the orthofermion algebra Cp for all p. In section 3, we will show
that there exists an infinite-dimensional irreducible representation of the algebra defined in
(9) as well as finite-dimensional irreducible representations of any dimension. Section 4 is
reserved for our conclusions.
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2. Construction of the algebra Ap

Let us consider an algebra Ap, generated by a, a∗, for each p ∈ N satisfying

ap+1 = 0, aa∗ − a∗a = 1 − βa∗p
ap, (10)

where β is a real number which may depend on p. Let M = aa∗ and N = a∗a. The algebra
implies the following:

aa∗a − a∗aa = a, (11)

aN = (N + 1)a, (12)

a∗k
ak = N(N − 1)(N − 2) · · · (N − k + 1), k = 1, 2, . . . , p (13)

(N − p)a∗p
ap = 0, (14)

(a∗p
ap)2 = p!a∗p

ap. (15)

Multiplying equation (11) from the right by a∗ and taking conjugate of the resulting equation
gives us two equations

M2 − NM = M, (16)

M2 − MN = M. (17)

These imply that M and N commute with each other. Then we will use equation (16) in the
following lemma to obtain values of β.

Lemma 1. If, for each p ∈ N , an algebra generated by a, a∗ satisfies ap+1 = 0 and
aa∗ − a∗a = 1 − βa∗pap then β = p+1

p! .

Proof.

M = (N + 1) − βa∗p
ap. (18)

Equation (16) gives

M2 = (N + 1)2 − 2β(N + 1)a∗p
ap + β2(a∗p

ap)2

= (N + 1) − βa∗p
ap + N(N + 1) − βNa∗p

ap (19)

and then equations (14), (15) simplify (19) as

[−2β(p + 1) + β2p! + β(1 + p)]a∗p
ap = 0 (20)

β[−(1 + p) + p!β] = 0. (21)

Hence β = 0 or β = p+1
p! . The case β = 0 with the assumption ap+1 = 0 contradicts the

relation aa∗ − a∗a = 1. Therefore the only β is p+1
p! .

For p = 1, the algebra Ap is the usual fermion algebra as in (1). For p � 1 we define
operators

�k = (−1)p−k

k!(p − k)!

p∏

j=0
j �=k

(N − j), k = 0, 1, . . . , p. (22)

We will show that these are projection operators. �
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Lemma 2. �k ∈ Ap, defined in (22) are projection operators and satisfy the following
identities:

1. �0 + �1 + · · · + �p = 1

2. N =
p∑

k=0

k�k

3. M =
p∑

k=1

k�k−1

4. (N − k)�k = �k(N − k) = 0 k = 0, 1, 2, . . . , p

5. �k�l = δkl�k k, l = 1, 2, . . . , p

6. M�k = �kM = (k + 1)�k

7. a�k = �k−1a k = 1, 2, . . . , p.

Proof. Identities 1 and 2 can be obtained just by substitution from definitions (22). For
identity 3, comparing (13) for k = p with (22) gives us

p!�p = a∗p
ap. (23)

Substituting this, and identities 2 and 1 in

M = (N + 1) − p + 1

p!
a∗p

ap (24)

provides us identity 3. For identity 4, equations (14), (23) imply

N�0 = 0 (25)

for k = 0. For the rest of k use (12) to obtain a factor �pa which is zero. Then the result
is obtained. The commutativity in identity 4 is obvious. Identities 4 and 1 prove identity 5.
Identities 3 and 5 imply identity 6. For identity 7, we use equation (12), identities 1, 2 and

�pa = 0, a�0 = 0. (26)

Then

a(�1 + 2�2 + · · · + p�p) = (�0 + 2�1 + · · · + p�p−1)a (27)

�ka�l = 0, l − k �= 1, k, l = 0, 1, . . . , p (28)

a�k = �k−1a�k = �k−1a. (29)

�

Theorem. The algebra Ap is isomorphic to the orthofermion algebra Cp.

Proof. Let us define a map ρ : Ap → Cp which is linear, *-preserving, multiplicative,
ρ(1) = 1, determined by mapping generators to generators

ρ(ak) = ck, k = 1, 2, . . . , p, (30)

where

ak = 1√
k!

�0a
k. (31)

This shows that ρ is an algebra isomorphism, i.e. ρ is a one to one and onto mapping. For this
we will prove that the generators of Ap satisfy the relations for those of Cp. Using (31) and
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identities 7, 6, 5, 4 in lemma 2 several times we obtain

a∗
k ak = �k, aka

∗
k = �0, k = 1, 2, . . . , p, (32)

aia
∗
j = 0 i �= j, aiaj = 0, a∗

i a
∗
j = 0, i, j = 1, 2, . . . , p. (33)

Now we can explicitly give the basis which makes this isomorphism possible

{x ∈ Ap|x = �k,�ka
j , a∗j

�k, k = 0, 1, . . . , p, j = 1, 2, . . . , p − k}. (34)

This amounts to (p+1)2 linearly independent elements and hence it is a basis for Ap. Consider
a set which contains all monomials in {ak, a

∗
k }pk=1, in which monomials are normal ordered, as

generators of Ap. This will be the same set as in (34) except the coefficients. Hence the algebra
Ap with generators {ak, a

∗
k }pk=1 is the orthofermion algebra. Having obtained an isomorphism

from Ap to Cp we can search for the opposite, i.e. ‘how can the generators of Cp be written
to obtain the algebra Ap?’. To do this we consider an element in Cp such that

f = c1 +
p∑

k=2

√
kc∗

k−1ck. (35)

This satisfies

f p =
√

p!cp, c∗
pcp = f ∗pf p

p!
. (36)

Here, note that the integer p is the subindex of c and c∗, whereas it is the power of f and f ∗.
Hence we have obtained all that is needed to prove the relations

ff ∗ − f ∗f = 1 − p + 1

p!
f ∗p

f p, f p+1 = 0. (37)
�

3. Representations of the algebra aa∗a − a∗aa = a

It is well known that the boson algebra (2) has a unique infinite-dimensional irreducible
representation, which, in our notation corresponds to

a|n, n + 1〉 = √
n|n − 1, n〉 (38)

a∗|n, n + 1〉 =
√

n + 1|n + 1, n + 2〉, n = 0, 1, 2, . . . . (39)

If the defining relation (2) for the boson algebra is multiplied by a from the right then we
obtain the defining relation (9) for A. This shows that A possesses an infinite-dimensional
representation. We also obtain the algebra A just by multiplying the first equation of (7) by
a from the right. This gives us existence of the finite-dimensional representations of A by
means of the representations of orthofermions. These are in hand.

Now we will construct representations starting from simultaneous eigenvectors of
N = a∗a and M = aa∗, |ν, µ〉 since N and M are commutative

N |ν, µ〉 = ν|ν, µ〉 (40)

M|ν, µ〉 = µ|ν, µ〉. (41)

For a non-negative integer k:

N(ak|ν, µ〉) = (ν − k)ak|ν, µ〉. (42)
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Since N cannot have a negative eigenvalue there must exist a number n for which

ν = n (43)

and N has zero eigenvalue corresponding to the vector |0, µ〉. We will show that in fact for
ν = 0, µ = 0 or 1. To show this, let us determine eigenvalues of M corresponding to the
vectors |n,µ〉. Take equation (16) and apply it to the vector |n,µ〉. Then

M2|n,µ〉 − NM|n,µ〉 − M|n,µ〉 = 0 (44)

µ2|n,µ〉 − nµ|n,µ〉 − µ|n,µ〉 = 0 (45)

µ(µ − n − 1) = 0 (46)

µ = 0 or µ = n + 1. (47)

The customary way to build representations of an oscillator algebra is to start from the
ground state |0, 1〉 which is annihilated by a and to build the other states in the representation
by applying the creation operator a∗. However this method fails for A since there may exist
states which are annihilated by a∗. More explicitly, it is impossible to deduce the M eigenvalue
of the state a∗|0, 1〉 by using (9).

On the other hand, we can obtain a unique finite (n + 1)-dimensional irreducible
representation for any non-negative integer n. To show this we start with the vector |n, 0〉. For
n = 0, a|0, 0〉 = 0 and a∗|0, 0〉 = 0 hence we have the only vector |0, 0〉 and one-dimensional
trivial representation. Now for any fixed n > 0 take the vector |n, 0〉. The algebra A leads us
to obtain n + 1 linearly independent sets of vectors

Sn = {|n, 0〉, |n − 1, n〉, |n − 2, n − 1〉, . . . , |1, 2〉, |0, 1〉} (48)

which is invariant under the actions of generators a, a∗. The proof follows

a∗|n, 0〉 = 0 (49)

which immediately follows from the fact that the norm of this vector is zero since |n, 0〉 is an
eigenvector of M = aa∗ with eigenvalue zero. Then we calculate eigenvalues of N and M on
a|n, 0〉:

Na|n, 0〉 = a(N − 1)|n, 0〉 = (n − 1)a|n, 0〉 (50)

Ma|n, 0〉 = na|n, 0〉. (51)

Thus we can set

a|n, 0〉 = α|n − 1, n〉, (52)

where α is a normalization factor. Taking the norm of both sides

n = |α|2 (53)

so that we can choose

a|n, 0〉 = √
n|n − 1, n〉. (54)

It then follows that

a∗|n − 1, n〉 = √
n|n, 0〉. (55)

Then we calculate eigenvalues of N and M on a|n− 1, n〉. We use the similar procedure above
to get

a|n − 1, n〉 = √
n − 1|n − 2, n − 1〉 (56)
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and

a∗|n − 2, n − 1〉 = √
n − 1|n − 1, n〉. (57)

Then going on this way we obtain that

a|k − 1, k〉 = √
k − 1|k − 2, k − 1〉, k = n, n − 1, . . . , 1 (58)

and

a∗|k − 2, k − 1〉 = √
k − 1|k − 1, k〉. (59)

Thus we have n + 1 different eigenvalues of N and M with n + 1 linearly independent
eigenvectors. We also found that starting from the eigenvector |n, 0〉 and acting each time
with the operator a on the resulting vector we end up with the eigenvector |0, 1〉 which is
annihilated by a. One can show that a vector |k − 1, k〉 obtained from |m, 0〉 by applying the
annihilation operator a m − k + 1 times and the vector |k − 1, k〉 obtained from |n, 0〉 (n �= m)

by applying a n − k + 1 times (k < n,m) are in fact orthogonal. So to differentiate these
vectors we will use a subindex for the vectors to indicate the top vector |m, 0〉 to which they
are related. Thus we denote the set of vectors related to |m, 0〉 by

Sm = {|m, 0〉, |m − 1,m〉m, |m − 2,m − 1〉m, . . . , |1, 2〉m, |0, 1〉m} (60)

which are invariant under the action of a, a∗. For each m,m < n, Sn and Sm become orthogonal
subspaces. So we obtain reducible representations since the sets do not interfere each other
under the actions of a, a∗. Hence once we have chosen n we obtain an (n + 1)-dimensional
irreducible representation.

It is important to realize that although starting from a vector |n, 0〉 leads us to an (n + 1)-
dimensional representation, starting from a vector |n − 1, n〉 leads us nowhere since action of
a∗ on this vector may lead to a vector which is not an eigenvector of M. Thus it is possible
that representations of A other than the ones we have presented exist.

4. Conclusion

We wanted to find an algebra for which the number operator N would have finite spectrum
different from {0, 1} as in the fermion algebra. We found a new presentation Ap

aa∗ − a∗a = 1 − p + 1

p!
a∗p

ap, ap+1 = 0

for the orthofermion algebra Cp whose representations have states c∗
n|0〉 corresponding to a

state containing the nth orthofermion, whereas in the representation of Ap the corresponding
state is the n-particle state, i.e. a state containing n particles.

We investigated a particle algebra aa∗a − a∗aa = a showing that it has both infinite- and
finite-dimensional representations. We obtained this result by constructing (n+1)-dimensional
irreducible representation for any fixed non-negative integer n. Hence we see that it includes
the fermion representation and the orthofermion representations. On the other hand, the
method we used for constructing representations does not give information about infinite-
dimensional representations except that which we know by means of the representation of the
boson algebra.
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